Abstract
Zircaloy-4 isothermal oxidation tests were conducted at 1000 °C under an oxygen atmosphere with flow rates varying from 20 to 200 mL/min. In this research, a breakaway time delay phenomenon was discovered. The temperature of the atmosphere near the cladding was measured in order to estimate the oxidation rate and identify the condition of the phenomenon. A sharp escalation in the cladding temperature was observed in the early stage of oxidation as the flow rate increased. In addition, macroscopic and microscopic observations were performed to identify the effects of initial temperature escalation. The results showed that the thickness of the dense columnar oxide increased in the oxide scale when the initial peak temperature exceeded 1050 °C. Based on these observations, it can be assumed that temperature escalation in the early stage can influence the thickness of dense oxides, and this in turn affects the oxidation behaviors, especially the breakaway time.
Funder
Korea Hydro & Nuclear Power
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献