Decolorization and Detoxification of Industrial Wastewater Containing Indigo Carmine by Aspergillus niger AN400 in Sequential Reactors

Author:

Rodrigues Kelly1ORCID,de Sousa Alana M. X.1,dos Santos Andreza D. O.1,Barbosa Bárbara C. A.2ORCID,Silva A. Rita3ORCID,Pereira Luciana34ORCID,Silva Glória M. M.1ORCID

Affiliation:

1. Instituto Federal de Educação, Ciência e Tecnologia do Ceará, Campus Fortaleza, Fortaleza CEP 60040-215, CE, Brazil

2. Instituto Federal de Educação, Ciência e Tecnologia do Maranhão, São Luís CEP 65075-441, MA, Brazil

3. CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal

4. LABBELS—Associate Laboratory, 4710-057 Braga, Portugal

Abstract

Effluents from the textile industry are an active problem in the sector and one of the world’s main environmental problems. The conventional treatments applied are not always efficient in terms of compliance with legislation, and, in many cases, the efficiency of treatment is guaranteed by the enormous energy expenditure involved, camouflaging the momentary problem and not effectively treating it. In this work, batch reactors with immobilized biomass of Aspergillus niger AN400 were arranged in series for the treatment of real textile wastewater containing approximately 20 mg/L of indigo carmine. Sucrose was added as a co-substrate in concentrations of 1 g/L and 0.5 g/L, in the first and second reactors, respectively, over 19 cycles of 48 h. The highest decolorization rate in the system was (93 ± 4) %, with the largest amount removed in the first reactor (90 ± 6) %, occurring mainly by biological means. The production of aromatic by-products from the initial degradation of the dye molecule was reflected in the lower removal efficiency of dissolved organic matter: 52% in the first reactor, and 25% in the second reactor. The number of colonies of fungi was higher than that of bacteria, 2.24:1 and 2.44:1 in the first and second reactors, respectively. The treated effluent in the system showed less toxicity than the raw effluent, and this demonstrates the potential of this technology in the treatment of textile effluents containing indigo carmine.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3