Author:
Ameen Thaair,Chen Ling,Xu Zhenxing,Lyu Dandan,Shi Hongyu
Abstract
Travel location recommendation methods using community-contributed geotagged photos are based on past check-ins. Therefore, these methods cannot effectively work for new travel locations, i.e., they suffer from the travel location cold start problem. In this study, we propose a convolutional neural network and matrix factorization-based travel location recommendation method to address the problem. Specifically, a weighted matrix factorization method is used to obtain the latent factor representations of travel locations. The latent factor representation for a new travel location is estimated from its photos by using a convolutional neural network. Experimental results on a Flickr dataset demonstrate that the proposed method can provide better recommendations than existing methods.
Subject
Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献