Integrated LSPR Biosensing Signal Processing Strategy and Visualization Implementation

Author:

Zhou Mixing1,Geng Zhaoxin12ORCID

Affiliation:

1. School of Information Engineering, Minzu University of China, Beijing 100081, China

2. Key Laboratory of Ethnic Language Intelligent Analysis and Security Governance of MOE, Minzu University of China, Beijing 100081, China

Abstract

The LSPR biosensor chip is a groundbreaking tool popular in laboratory settings for identifying disease markers. However, its use in clinical environments is not as widespread. One notable gap is the lack of a universal signal processing tool for LSPR biosensing. To escalate its precision, there is an emerging need for software that not only optimizes signal processing but also incorporates self-verification functionalities within LSPR biochemical sensors. Enter the visual LSPR sensor software—an innovative platform that processes real-time transmission or reflection spectra. This advanced software adeptly captures the nuanced structural changes at the nanostructure interface prompted by environmental fluctuations. It diligently records and computes a suite of parameters, including the resonance wavelength shift, full width at half maximum, sensitivity, and quality factor. These features empower users to tailor processing algorithms for each data capture session. Transcending traditional instruments, this method accommodates a multitude of parameters and ensures robust result validation while tactfully navigating nanostructure morphology complexities. Forsaking third-party tool dependencies, the software tackles challenges of precision and cost-effectiveness head-on, heralding a significant leap forward in nanophotonics, especially for high-throughput LSPR biosensing applications. This user-centric innovation marks substantial progress in biochemical detection. It is designed to serve both researchers and practitioners in the field of nanophotonic sensing technology, simplifying complexity while enhancing reliability and efficiency.

Funder

National Key Research and Development Plan of China

National Natural Science Foundation of China

Beijing Natural Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3