An Experimental Investigation of R600a Condensation in a Multiport Microchannel

Author:

Çoban Burak1ORCID,Kuddusi Lütfullah2ORCID

Affiliation:

1. Mechanical Engineering Programme, Graduate School, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey

2. Mechanical Engineering Department, Faculty of Mechanical Engineering, Istanbul Technical University, 34437 Gumussuyu, Istanbul, Turkey

Abstract

This study aims to provide condensation heat transfer coefficients of R600a (isobutane) refrigerant under mass fluxes between 50 and 98 kg/m2·s at saturation temperatures of 35 °C, 40 °C and 45 °C. Additionally, experiments are conducted with varying inlet vapour quality to understand its effect on the condensation heat transfer measurement. An aluminium multiport microchannel with a hydraulic diameter (Dh) of 0.399 mm is used, where a plexiglass cover is mounted on the top of the microchannels to observe the flow conditions. A 1D heat transfer through the aluminium block is assumed, and heat flux through the refrigerant to the coolant is measured to obtain condensation heat transfer coefficients of R600a. The results showed that decreasing saturation temperature and increasing vapour quality increase the condensation heat transfer coefficient. Increasing refrigerant mass flux increases the heat transfer coefficient up to a specific mass flux. It is observed that the effect of inlet vapour quality becomes significant as introduced quality decreases due to increasing fluctuation.

Funder

Arçelik A.Ş. Central R & D Department

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3