3D-DIoU: 3D Distance Intersection over Union for Multi-Object Tracking in Point Cloud

Author:

Mohammed Sazan Ali Kamal12ORCID,Razak Mohd Zulhakimi Ab1ORCID,Rahman Abdul Hadi Abd3ORCID

Affiliation:

1. Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia

2. Department of Automotive Technology, Erbil Technology College, Erbil Polytechnic University, Erbil 44001, Iraq

3. Center for Artificial Intelligence Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia

Abstract

Multi-object tracking (MOT) is a prominent and important study in point cloud processing and computer vision. The main objective of MOT is to predict full tracklets of several objects in point cloud. Occlusion and similar objects are two common problems that reduce the algorithm’s performance throughout the tracking phase. The tracking performance of current MOT techniques, which adopt the ‘tracking-by-detection’ paradigm, is degrading, as evidenced by increasing numbers of identification (ID) switch and tracking drifts because it is difficult to perfectly predict the location of objects in complex scenes that are unable to track. Since the occluded object may have been visible in former frames, we manipulated the speed and location position of the object in the previous frames in order to guess where the occluded object might have been. In this paper, we employed a unique intersection over union (IoU) method in three-dimension (3D) planes, namely a distance IoU non-maximum suppression (DIoU-NMS) to accurately detect objects, and consequently we use 3D-DIoU for an object association process in order to increase tracking robustness and speed. By using a hybrid 3D DIoU-NMS and 3D-DIoU method, the tracking speed improved significantly. Experimental findings on the Waymo Open Dataset and nuScenes dataset, demonstrate that our multistage data association and tracking technique has clear benefits over previously developed algorithms in terms of tracking accuracy. In comparison with other 3D MOT tracking methods, our proposed approach demonstrates significant enhancement in tracking performances.

Funder

Ministry of Higher Education (MOHE) Malaysia

Universiti Kebangsaan Malaysia

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3