Improving Deposited Surface Quality in Additive Manufacturing Using Structured Light Scanning Characterization and Mechanistic Modeling

Author:

Mukherjee Tuhin1ORCID,Shen Weijun2ORCID,Liao Yiliang3ORCID,Li Beiwen1ORCID

Affiliation:

1. Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA

2. Department of Industrial and Systems Engineering, University of Wisconsin—Madison, Madison, WI 53706, USA

3. Department of Industrial and Manufacturing Systems Engineering, Iowa State University, Ames, IA 50011, USA

Abstract

The surface quality of parts fabricated using laser-directed energy deposition additive manufacturing significantly affects the fatigue life, corrosion resistance, and performance of the components. Surface quality improvements remain a key challenge in laser-directed energy deposition because of the involvement of multiple simultaneously occurring physical phenomena controlling the surface characteristics. Here, a unique combination of structured light scanning characterization and mechanistic modeling was used to identify three key physical factors that affect surface quality. These factors include a geometric factor, an instability factor, and a disintegration factor, which were calculated using a mechanistic model and correlated with the surface characteristics data obtained from the structured light scanning characterization. It was found that these factors can precisely explain the variations in the average surface roughness. In addition, skewness and kurtosis of the surfaces made by laser-directed energy deposition were found to be significantly better than those observed in traditional manufacturing. Based on the experimental and modeling results, a surface quality process map was constructed that can guide engineers in selecting appropriate sets of process variables to improve deposit surface quality in additive manufacturing.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3