Enhanced Port Vulnerability Assessment Using Unmanned-Aerial-Vehicle-Based Structural Health Monitoring

Author:

Tsaimou Christina N.1ORCID,Brouziouti Stavroula1,Sartampakos Panagiotis2,Tsoukala Vasiliki K.1

Affiliation:

1. Laboratory of Harbour Works, School of Civil Engineering, National Technical University of Athens, 5 Heroon Polytechniou Str., 15780 Zografou, Greece

2. NIREAS Engineering, 1-3 Skra Str., 17673 Athens, Greece

Abstract

Port vulnerability assessment is inherently linked to the delivery of sustainable and resilient infrastructure. Identifying the vulnerabilities and weaknesses of a port system allows for the minimization of disaster effects and optimization of maintenance, repair, or mitigation actions. The current port vulnerability assessment practices are built upon the examination of a diversity of indicators (parameters), including technical, physical, environmental, and socioeconomic pressures. From an engineering perspective, and given that ports are tangible infrastructure assets, their vulnerability is highly affected by the structural condition of their facilities. Hence, the present research seeks to enhance port vulnerability assessment by introducing structural condition parameters based on Structural Health Monitoring applications. The four fishing and leisure harbors of the Municipality of Thebes, located in central Greece, were used as a case study. Two approaches were considered for the harbors’ vulnerability assessments: (a) enabling and (b) disabling the use of the proposed parameters. In situ inspections were conducted with the employment of an Unmanned Aerial Vehicle (UAV) for condition monitoring. UAV data were analyzed to generate geospatial images that allow for the mapping and detecting of defects and failures in port infrastructure. The overall research assists decision-makers in gaining valuable insight into the system’s vulnerabilities and prioritizing their interventions.

Funder

Special Account for Research Funding of the National Technical University of Athens, Greece

MUNICIPALITY OF THEBES

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3