Stochastic Flood Simulation Method Combining Flood Intensity and Morphological Indicators

Author:

Fu Xiaodi123,He Xiaoyan123,Ding Liuqian12

Affiliation:

1. State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, Beijing 100038, China

2. China Institute of Water Resources and Hydropower Research, Beijing 100038, China

3. Research Center on Flood & Drought Disaster Prevention and Reduction, Ministry of Water Resources, Beijing 100038, China

Abstract

The existing flood stochastic simulation methods are mostly applied to the stochastic simulation of flood intensity characteristics, with less consideration for the randomness of the flood hydrograph shape and its correlation with intensity characteristics. In view of this, this paper proposes a flood stochastic simulation method that combines intensity and morphological indicators. Using the Foziling and Xianghongdian reservoirs in the Pi River basin in China as examples, this method utilizes a three-dimensional asymmetric Archimedean M6 Copula to construct stochastic simulation models for peak flow, flood volume, and flood duration. Based on K-means clustering, a multivariate Gaussian Copula is employed to construct a dimensionless flood hydrograph stochastic simulation model. Furthermore, separate two-dimensional symmetric Copula stochastic simulation models are established to capture the correlations between flood intensity characteristics and shape variables such as peak shape coefficient, peak occurrence time, rising inflection point angle, and coefficient of variation. By evaluating the fit between the simulated flood characteristics and the dimensionless flood hydrograph, a complete flood hydrograph is synthesized, which can be applied in flood control dispatch simulations and other related fields. The feasibility and practicality of the proposed model are analyzed and demonstrated. The results indicate that the simulated floods closely resemble natural floods, making the simulation outcomes crucial for reservoir scheduling, risk assessment, and decision-making processes.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference34 articles.

1. Current Status and Development Direction of Hydrological and Water Resources Random Simulation;Yang;Water Sci. Eng. Technol.,2009

2. Risk Analysis of Flood Control Scheduling Based on Stochastic Hydrological Processes;Zhou;J. Hydraul. Eng.,2006

3. Deriving design flood hydrograph based on conditional distribution: A case study of Danjiangkou reservoir in Hanjiang basin;Xu;Math. Probl. Eng.,2016

4. Nelsen, R.B. (2006). An Introduction to Copulas, Springer.

5. A review of bivariate hydrological frequency distribution;Xie;Adv. Water Sci.,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3