Petrogenetic Constraints of Early Cenozoic Mafic Rocks in the Southwest Songliao Basin, NE China: Implications for the Genesis of Sandstone-Hosted Qianjiadian Uranium Deposits

Author:

Yang Dong-GuangORCID,Wu Jian-Hua,Nie Feng-Jun,Bonnetti Christophe,Xia Fei,Yan Zhao-Bin,Cai Jian-Fang,Wang Chang-Dong,Wang Hai-Tao

Abstract

The tectonic inversion of the Songliao Basin during the Cenozoic may have played an important role in controlling the development of sandstone-type uranium deposits. The widely distributed mafic intrusions in the host sandstones of the Qianjiadian U ore deposits provided new insights to constrain the regional tectonic evolution and the genesis of the U mineralization. In this study, zircon U-Pb dating, whole-rock geochemistry, Sr-Nd-Pb isotope analysis, and mineral chemical compositions were presented for the mafic rocks from the Qianjiadian area. The mafic rocks display low SiO2 (44.91–52.05 wt.%), high TFe2O3 contents (9.97–16.46 wt.%), variable MgO (4.59–15.87 wt.%), and moderate K2O + Na2O (3.19–6.52 wt.%), and can be subdivided into AB group (including basanites and alkali olivine basaltic rocks) and TB group (mainly tholeiitic basaltic rocks). They are characterized by homogenous isotopic compositions (εNd (t) = 3.47–5.89 and 87Sr/86Sr = 0.7032–0.7042) and relatively high radiogenic 206Pb/204Pb (18.13–18.34) and Nb/U ratios (23.0–45.6), similar to the nearby Shuangliao basalts, suggesting a common asthenospheric origin enriched with slab-derived components prior to melting. Zircon U-Pb and previous Ar-Ar dating show that the AB group formed earlier (51–47 Ma) than the TB group (42–40 Ma). Compared to the TB group, the AB group has higher TiO2, Na2O, K2O, P2O5, Ce, and HREE contents and Ta/Yb and Sr/Yb ratios, which may have resulted from variable depth of partial melting in association with lithospheric thinning. Combined with previous research, the Songliao Basin experienced: (1) Eocene (~50–40 Ma) lithospheric thinning and crustal extension during which mafic rocks intruded into the host sandstones of the Qianjiadian deposit, (2) a tectonic inversion from extension to tectonic uplift attributed to the subduction of the Pacific Plate occurring at ~40 Ma, and (3) Oligo–Miocene (~40–10 Ma) tectonic uplift, which is temporally associated with U mineralization. Finally, the close spatial relation between mafic intrusions and the U mineralization, dike-related secondary reduction, and secondary oxidation of the mafic rocks in the Qianjiadian area suggest that Eocene mafic rocks and their alteration halo in the Songliao Basin may have played a role as a reducing barrier for the U mineralization.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference102 articles.

1. Tectono-metallogenic systems — The place of mineral systems within tectonic evolution, with an emphasis on Australian examples

2. Structure Styles of Mesozoic-Cenozoic U-bearing Rock Series in Northern China

3. Characteristics and distribution of world’s identified sandstone-type uranium resources;Wang;Acta Geol. Sin.,2017

4. Reversal structure and its relation to metallization of sandstone-type uranium deposit in Northern Songliao Basin;Zhao;Uranium Geol.,2018

5. Global Miocene tectonics and regional sandstone-style uranium mineralization

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3