Abstract
In recent years, driver fatigue has become one of the main causes of road accidents. As a result, fatigue detection systems have been developed to warn drivers, and, among the available methods, EEG signal analysis is recognized as the most reliable method for detecting driver fatigue. This study presents an automated system for a two-stage classification of driver fatigue, using a combination of compressed sensing (CS) theory and deep neural networks (DNNs), that is based on EEG signals. First, CS theory is used to compress the recorded EEG data in order to reduce the computational load. Then, the compressed EEG data is fed into the proposed deep convolutional neural network for automatic feature extraction/selection and classification purposes. The proposed network architecture includes seven convolutional layers together with three long short-term memory (LSTM) layers. For compression rates of 40, 50, 60, 70, 80, and 90, the simulation results for a single-channel recording show accuracies of 95, 94.8, 94.6, 94.4, 94.4, and 92%, respectively. Furthermore, by comparing the results to previous methods, the accuracy of the proposed method for the two-stage classification of driver fatigue has been improved and can be used to effectively detect driver fatigue.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献