A New Container Throughput Forecasting Paradigm under COVID-19

Author:

Huang Anqiang,Liu Xinjun,Rao Changrui,Zhang Yi,He Yifan

Abstract

COVID-19 has imposed tremendously complex impacts on the container throughput of ports, which poses big challenges for traditional forecasting methods. This paper proposes a novel decomposition–ensemble forecasting method to forecast container throughput under the impact of major events. Combining this with change-point analysis and empirical mode decomposition (EMD), this paper uses the decomposition–ensemble methodology to build a throughput forecasting model. Firstly, EMD is used to decompose the sample data of port container throughput into multiple components. Secondly, fluctuation scale analysis is carried out to accurately capture the characteristics of the components. Subsequently, we tailor the forecasting model for every component based on the mode analysis. Finally, the forecasting results of all the components are combined into one aggregated output. To validate the proposed method, we apply it to a forecast of the container throughput of Shanghai port. The results show that the proposed forecasting model significantly outperforms its rivals, including EMD-SVR, SVR, and ARIMA.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3