Experimental Study on the Performance Decay of Thermal Insulation and Related Influence on Heating Energy Consumption in Buildings

Author:

D’Agostino DianaORCID,Landolfi RobertoORCID,Nicolella MaurizioORCID,Minichiello FrancescoORCID

Abstract

The External Thermal Insulation Composite System (ETICS) is one of the most common passive strategies to obtain energy savings in existing buildings. Despite previous studies dealing with ETICS durability in real building case studies or involving accelerated ageing tests in climatic chambers, little progress has been made in the knowledge of the long-term durability and energy efficiency of the system. In this work, following previous experiments on ageing cycles, different climatic chambers are used to accelerate performance decay by simulating the natural outdoor exposure to assess the thermal transmittance decay of a building wall. After evaluating through laboratory tests the decay of the thermal performances of grey expanded polystyrene sintered (EPS) and polyurethane, the results are applied to an existing building. The case study building is virtually located in three different Italian climatic zones and an evaluation in terms of thermal transmittance values and their influence on heating energy consumption is made by using the dynamic simulation software DesignBuilder. The results show no significant variations during ETICS service life; the thermal performances are reduced little over time and therefore there is an increase in consumption for building heating of about only 2% after a time t1 equal to 8 years.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference48 articles.

1. Towards a Zero-Emission, Efficient and Resilient Buildings and Construction Sectorhttps://www.unenvironment.org/resources/publication/2019-global-status-report-buildings-and-construction-sector

2. New Report: The Building and Construction Sector Can Reach Net Zero Carbon Emissions by 2050https://www.worldgbc.org/news-media/WorldGBC-embodied-carbon-report-published

3. Energy Performance of Buildings Directivehttps://ec.europa.eu/energy/topics/energy-efficiency/energy-efficient-buildings/energy-performance-buildings-directive_en#:~:text=Buildings%20are%20responsible%20for%20approximately,building%20stock%20is%20energy%20inefficient

4. Experimental comparative study of the thermal performance of the façade of a building refurbished using ETICS, and quantification of improvements

5. Building rehabilitation versus demolition and new construction: Economic and environmental assessment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3