Abstract
Green facades applied on a building’s envelope allow achieving the building’s passive thermal control and energy consumption reduction. These are complex systems and many site- and plant-specific parameters influence their energy behavior. The leaf area index (LAI) is a relevant plant characteristic to consider. Solar shading and latent heat loss of plant evapotranspiration are the two main cooling mechanisms. The aim of this study was to assess the cooling effect provided by an evergreen south oriented green facade in summer in a Mediterranean area and to investigate what happens when LAI changes. Experimental data were used to calculate the cooling effect provided by the facade. Simulations with different LAI values were performed to determine the related cooling effect. The canopy solar transmissivity decreased by 54% for every LAI unit increase. LAI significantly influenced the green facade cooling performance. As LAI increased, solar shading and latent heat increased; this was relevant until an upper limit value of 6. An exponential equation to calculate the mean extinction coefficient (km), and a polynomial relationship, with very good agreement, were proposed to calculate shading and latent heat as function of LAI. The findings of this research can effectively contribute to fill still existing gaps on green facades’ energy performance and to the energy simulation of buildings equipped with them.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献