Modelling Self-Heating and Self-Ignition Processes during Biomass Storage

Author:

Wei Jiayu1,Yao Can1,Sheng Changdong1

Affiliation:

1. School of Energy and Environment, Southeast University, Nanjing 210096, China

Abstract

A mathematical model was developed to predict the self-heating and self-ignition processes of relatively dry biomass during storage, considering in detail the effects of moisture exchange behaviour, low-temperature oxidation reaction and associated heat and mass transfer. Basket heating tests on fir pellets and powder at temperatures of 180–200 °C were conducted to observe the heating process and determine the kinetics of low-temperature chemical oxidation for model validation. As a result, it was demonstrated that the developed model could reasonably represent the self-heating and spontaneous combustion processes of biomass storage. Furthermore, the numerical study and model sensitivity analysis revealed that reasonably describing the low-temperature oxidation and associated heat and mass transfer process with reliable estimations of kinetic and thermophysical parameters of the biomass material is necessary for predicting the self-ignition, considering the effect of water exchange behaviour is essential to predict the self-heating process even for relatively dry biomass, such as pellets, with the moisture content up to 15–20%.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3