Optimized Fractional Maximum Power Point Tracking Using Bald Eagle Search for Thermoelectric Generation System

Author:

Rezk Hegazy12ORCID,Olabi Abdul Ghani3,Ghoniem Rania M.4,Abdelkareem Mohammad Ali35ORCID

Affiliation:

1. Department of Electrical Engineering, College of Engineering in Wadi Alddawasir, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia

2. Department of Electrical Engineering, Faculty of Engineering, Minia University, Minia 61111, Egypt

3. Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates

4. Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

5. Department of Chemical Engineering, Faculty of Engineering, Minia University, Minia 61111, Egypt

Abstract

The amount of energy that a thermoelectric generator (TEG) is capable of harvesting mainly depends on the temperature difference between the hot and cold sides of the TEG. To ensure that the TEG operates efficiently under any condition or temperature variation, it is crucial to have a reliable MPPT that keeps the TEG as close as possible to its MPP. Fractional control is usually preferred over integer control because it allows for more precise, flexible, and robust control over a system. The controller parameters in fractional control are not limited to integer values, but rather can have fractional values, which enables more precise control of the system’s dynamics. In this paper, an optimized fractional PID-based MPPT that effectively addresses two primary issues, dynamic response and oscillation around MPP, is proposed. Firstly, the five unknown parameters of the optimized fractional PID-based MPPT were estimated by the BES “bald eagle search” algorithm. To validate the superiority of the BES, the results were compared with those obtained using other optimization algorithms, such as ant lion optimizer (ALO), equilibrium optimizer (EO), cuckoo search (CS), and WOA “whale optimization algorithm”. The results demonstrate that BES outperforms ALO, EO, CS, and WOA. Additionally, the tracking performance of proposed MPPT was evaluated using two scenarios that involved variations in temperature differences and sudden changes in the load demanded. Overall, the proposed optimized fractional PID-based MPPT effectively improves dynamic performance and eliminates oscillation around MPP under steady state compared to other tracking methods, such as P&O “perturb and observe” and incremental conductance (INR).

Funder

Princess Nourah bint Abdulrahman University

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3