Affiliation:
1. College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
2. College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
Abstract
With the rapid advancements in flexible wearable electronics, there is increasing interest in integrated electronic fabric innovations in both academia and industry. However, currently developed plastic board-based batteries remain too rigid and bulky to comfortably accommodate soft wearing surfaces. The integration of fabrics with energy-storage devices offers a sustainable, eco-friendly, and pervasive energy solution for wearable distributed electronics. Fabric-type flexible energy-storage devices are particularly advantageous as they conform well to the curved body surface and the various movements associated with wearing habits such as running. This review presents a comprehensive overview of the advances in flexible fabric-type energy-storage devices for wearable electronics, including their significance, construction methods, structure design, hybrid forms with other energy sources, and the existing challenges and future directions. With worldwide efforts on materials and technologies, we hope that progress in this review will revolutionize our way of life.
Funder
the National Natural Science Foundation of China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献