Energy Consumption Forecasting in a University Office by Artificial Intelligence Techniques: An Analysis of the Exogenous Data Effect on the Modeling

Author:

Sadeghian Broujeny Roozbeh1ORCID,Ben Ayed Safa1,Matalah Mouadh1ORCID

Affiliation:

1. LINEACT-Lab. EA7527, CESI, 62000 Arras, France

Abstract

The forecasting of building energy consumption remains a challenging task because of the intricate management of the relevant parameters that can influence the performance of models. Due to the powerful capability of artificial intelligence (AI) in forecasting problems, it is deemed to be highly effective in this domain. However, achieving accurate predictions requires the extraction of meaningful historical knowledge from various features. Given that the exogenous data may affect the energy consumption forecasting model’s accuracy, we propose an approach to study the importance of data and selecting optimum time lags to obtain a high-performance machine learning-based model, while reducing its complexity. Regarding energy consumption forecasting, multilayer perceptron-based nonlinear autoregressive with exogenous inputs (NARX), long short-term memory (LSTM), gated recurrent unit (GRU), decision tree, and XGboost models are utilized. The best model performance is achieved by LSTM and GRU with a root mean square error of 0.23. An analysis by the Diebold–Mariano method is also presented, to compare the prediction accuracy of the models. In order to measure the association of feature data on modeling, the “model reliance” method is implemented. The proposed approach shows promising results to obtain a well-performing model. The obtained results are qualitatively reported and discussed.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference29 articles.

1. Update to limits to growth: Comparing the World3 model with empirical data;Herrington;J. Ind. Ecol.,2021

2. Ministry of Ecological and Solidarity Transition (2019). Multi Annual Energy Plan.

3. (2022, September 22). Énergie dans les Bâtiments|Ministères Écologie Énergie Territoires (n.d.). Available online: https://www.ecologie.gouv.fr/energie-dans-batiments.

4. Data-driven heating and cooling load predictions for non-residential buildings based on support vector machine regression and NARX Recurrent Neural Network: A comparative study on district scale;Koschwitz;Energy,2018

5. Predicting electricity consumption for commercial and residential buildings using deep recurrent neural networks;Rahman;Appl. Energy,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3