Paleoenvironment Change and Organic Matter Accumulation of Marine Shale in the Zigong Area, Southern Sichuan Basin, China: A Case Study of Well Z303

Author:

Li Huimin1,He Taohua12ORCID,Li Weifeng1

Affiliation:

1. Hubei Key Laboratory of Petroleum Geochemistry and Environment, Yangtze University, Wuhan 430100, China

2. School of Geosciences, China University of Petroleum (East China), Qingdao 266580, China

Abstract

Marine organic-rich shale is widely distributed in the Upper Ordovician Wufeng Formation (WF-F) and Silurian Longmaxi Formation (LMX-F), making it an important target for shale gas exploration and development. In order to clarify the paleoenvironment evolution characteristics and the effect of depositional environment on organic matter (OM) accumulation of the marine shale in the Wufeng and Longmaxi Formations, a series of geochemical and petrological experiments were carried out, including TOC, Rock-Eval pyrolysis, XRD, and major and trace element analyses. Research results show that based on the variation characteristics of TOC, mineral composition, and paleoenvironment evolution characteristics, four units can be identified from bottom to top: Wufeng Formation (WF-F), Lower Longmaxi Formation (L-LMX-F), Middle Longmaxi Formation (M-LMX-F) and Upper Longmaxi Formation (U-LMX-F). The high-quality marine shale developed in WF-F and LMX-F in the Zigong area (TOC: 0.65–4.56%, avg. 2.15%) contains type I kerogen (kerogen type index: 86.0–98.3, avg. 92.7) and OM in mature stage (average of Rb and Tmax are 2.94%, 646 °C, respectively). Clay minerals (avg. 42.5%) and quartz (avg. 37.7%) dominate the mineral compositions, with subordinated dolomite (avg. 6.3%), feldspar (avg. 6.0%), calcite (avg. 4.0%), and pyrite (avg. 3.5%). Paleoenvironment indicators suggest that during the sedimentary period of WF-F and L-LMX-F, the paleoclimate condition was humid; the weathering condition, paleosalinity, and redox conditions were the strongest; and there was a relatively high level of paleoproductivity and a relatively low level of terrigenous detritus influx. However, during the period of M-LMX-F and U-LMX-F, the climate gradually changed from warm and humid to hot and dry; the intensity of weathering conditions, paleosalinity, and redox conditions was relatively reduced; terrigenous detritus influx increased; and the paleoproductivity decreased. Relationships between TOC and paleoclimate condition, paleosalinity, redox condition, paleoproductivity, and terrigenous detritus influx suggest that redox condition is most important controlling factor for OM enrichment. A combination of anoxic bottom water conditions and high primary productivity and a relatively low terrigenous input resulted in the enrichment of OM in the WF-F and L-LMX-F, making it a potential exploration and development target. The research can provide scientific guidance for the selection of potential shale gas development targets in the Zigong area.

Funder

State Center for Research and Development of Oil Shale Exploitation

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3