Three-Dimensional Surrogate Model Based on Back-Propagation Neural Network for Key Neutronics Parameters Prediction in Molten Salt Reactor

Author:

Bei Xinyan12,Dai Yuqing12,Yu Kaicheng12ORCID,Cheng Maosong12

Affiliation:

1. Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

The simulation and analysis of neutronics parameters in Molten Salt Reactors (MSRs) is fundamental for the design of the reactor core. However, high-fidelity neutron transport calculations of the MSR are time-consuming and require significant computational resources. Artificial neural networks (ANNs) have been used in various industries, and in recent years are increasingly introduced in the nuclear industry. Back-Propagation neural network (BPNN) is one type of ANN. A surrogate model based on BP neural network is developed to quickly predict two key neutronics parameters in reactor core: the effective multiplication factor (keff) and the three-dimensional channel-by-channel neutron flux distribution. The dataset samples are generated by modeling and simulating different operation states of the Molten Salt Reactor Experiment (MSRE) using the Monte Carlo code. Hyper-parameters optimization is performed to obtain the optimal surrogate model. The numerical results on the test dataset show good agreement between the surrogate model and the Monte Carlo code. Additionally, the surrogate model significantly reduces computation time compared to the Monte Carlo code and greatly enhances efficiency. The feasibility and advantages of the proposed surrogate model is demonstrated, which has important significance for real-time prediction and design optimization of the reactor core.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3