Numerical Simulation of the Hydrogen-Based Directly Reduced Iron Melting Process

Author:

Lin Xiaoping123,Ni Bing12,Shangguan Fangqin12

Affiliation:

1. Steel Industry Green and Intelligent Manufacturing Technology Center, China Iron and Steel Research Institute Group, Beijing 100081, China

2. National Key Laboratory of Metallurgical Intelligent Manufacturing System, Beijing 100081, China

3. Metallurgical Technology Institute, Central Iron and Steel Research Institute, Beijing 100081, China

Abstract

In the context of carbon reduction and emission reduction, the new process of electric arc furnace (EAF) steelmaking based on direct hydrogen reduction is an important potential method for the green and sustainable development of the steel industry. Within an electric furnace for the hydrogen-based direct reduction of iron, after hydrogen-based directly reduced iron (HDRI) is produced through a shaft furnace, HDRI is melted or smelted in an EAF to form final products such as high-purity iron or high-end special steel. As smelting proceeds in the electric furnace, it is easy for pieces of HDRI to bond to each other and become larger pieces; they may even form an “iceberg”, and this phenomenon may then worsen the smelting working conditions. Therefore, the melting of HDRI is the key to affecting the smelting cycle and energy consumption of EAFs. In this study, based on the basic characteristics of HDRI, we established an HDRI melting model using COMSOL Multiphysics 6.0 and studied the HDRI melting process, utilizing pellets with a radius of 8 mm. The results of our simulation show that the HDRI melting process can be divided into three different stages: generating a solidified steel layer, melting the solidified steel layer, and melting HDRI bodies. Moreover, multiple HDRI processes are prone to bonding in the melting process. Increasing the spacing between pieces of HDRI and increasing the preheating temperature used on the HDRI can effectively reduce the aforementioned bonding phenomenon. When the melting pool temperature is 1873 K, increasing the spacing of HDRI to 10 mm and increasing the initial HDRI temperature to 973 K was shown to effectively reduce or eliminate the bonding phenomenon among pieces of HDRI. In addition, with the increase in the melting pool temperature, the time required for melting within the three stages of the HDRI melting process shortened, and the melting speed was accelerated. With the increase in the temperature used to preheat the HDRI, the duration of the solidified steel layer’s existence was also shortened, but this had no significant impact on the time required for the complete melting of HDRI. This study provides a theoretical basis for the optimization of the HDRI process within EAFs.

Publisher

MDPI AG

Reference37 articles.

1. Decarbonizing China’s iron and steel industry from the supply and demand sides for carbon neutrality;Ren;Appl. Energy,2021

2. Environment-Climate-Energy: Quo Vadis, Industry?;Eder;BHM Berg-Hüttenmännische Monatshefte,2017

3. Reduction of Iron Oxides with Hydrogen—A Review;Spreitzer;Steel Res. Int.,2019

4. Oxygen versus EAF steelmaking in the 21st century;Fruenhan;Trans. Indian Inst. Met.,2006

5. Miller, F.P., Vandome, A.F., and Mcbrewster, J. (2010). Electric Arc Furnacel, Alphascript Publishing.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3