A Method for Image-Based Interpretation of the Pulverized Coal Cloud in the Blast Furnace Tuyeres

Author:

Zhou Guanwei12,Saxén Henrik1ORCID,Mattila Olli3,Yu Yaowei2

Affiliation:

1. Process and Systems Engineering Laboratory, Faculty of Science and Engineering, Åbo Akademi University, FI-20500 Turku, Finland

2. State Key Laboratory of Advanced Special Steel, Shanghai Key Laboratory of Advanced Ferrometallurgy, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China

3. SSAB Europe Oy, Rautaruukintie 155, FI-92101 Raahe, Finland

Abstract

The conditions in the combustion zones, i.e., the raceways, are crucial for the operation of the blast furnace. In recent years, advancements in tuyere cameras and image processing and interpretation techniques have provided a better means by which to obtain information from this region of the furnace. In this study, a comprehensive approach is proposed to visually monitor the status of the pulverized coal cloud at the tuyeres based on a carefully designed processing strategy. Firstly, tuyere images are preprocessed to remove noise and enhance image quality, applying the adaptive Otsu algorithm to detect the edges of the coal cloud, enabling precise delineation of the pulverized coal region. Next, a Swin–Unet model, which combines the strengths of Swin Transformer and U-Net architecture, is employed for accurate segmentation of the coal cloud area. The extracted pulverized coal cloud features are analyzed using RGB super-pixel weighting, which takes into account the variations in color within the cloud region. It is demonstrated that the pulverized coal injection rate shows a correlation with the state of the cloud detected based on the images. The effectiveness of this visual monitoring method is validated using real-world data obtained from a blast furnace of SSAB Europe. The experimental results align with earlier research findings and practical operational experience.

Funder

China Scholarship Council

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3