Optimizing Short-Term Photovoltaic Power Forecasting: A Novel Approach with Gaussian Process Regression and Bayesian Hyperparameter Tuning

Author:

Islam Md. Samin Safayat1,Ghosh Puja1,Faruque Md. Omer2,Islam Md. Rashidul1ORCID,Hossain Md. Alamgir3ORCID,Alam Md. Shafiul4ORCID,Islam Sheikh Md. Rafiqul1

Affiliation:

1. Department of Electrical & Electronic Engineering, Rajshahi University of Engineering & Technology, Rajshahi 6204, Bangladesh

2. Department of Electrical & Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh

3. Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia

4. Applied Research Center for Environment & Marine Studies, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia

Abstract

The inherent volatility of PV power introduces unpredictability to the power system, necessitating accurate forecasting of power generation. In this study, a machine learning (ML) model based on Gaussian process regression (GPR) for short-term PV power output forecasting is proposed. With its benefits in handling nonlinear relationships, estimating uncertainty, and generating probabilistic forecasts, GPR is an appropriate approach for addressing the problems caused by PV power generation’s irregularity. Additionally, Bayesian optimization to identify optimal hyper-parameter combinations for the ML model is utilized. The research leverages solar radiation intensity data collected at 60-min and 30-min intervals over periods of 1 year and 6 months, respectively. Comparative analysis reveals that the data set with 60-min intervals performs slightly better than the 30-min intervals data set. The proposed GPR model, coupled with Bayesian optimization, demonstrates superior performance compared to contemporary ML models and traditional neural network models. This superiority is evident in 98% and 90% improvements in root mean square errors compared to feed-forward neural network and artificial neural network models, respectively. This research contributes to advancing accurate and efficient forecasting methods for PV power output, thereby enhancing the reliability and stability of power systems.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3