Generation Potential and Characteristics of Kerogen Cracking Gas of Over-Mature Shale

Author:

Zhang Lin1,Du Zhili2,Jin Xiao2,Li Jian3,Lu Bin3

Affiliation:

1. Haikou Marine Geological Survey Center, China Geological Survey, Haikou 571127, China

2. Natural Resources Comprehensive Survey Command Center, China Geological Survey, Beijing 100055, China

3. Research Institute of Petroleum Exploration and Development, Beijing 100083, China

Abstract

To investigate the characteristics and generation potential of gas generated from over-mature shale, hydrous and anhydrous pyrolysis experiments were carried out on the Longmaxi Formation in the Anwen 1 well of the Sichuan Basin of China at temperatures of 400–598 °C and pressures of 50 Mpa, with (hydrous) and without (anhydrous) the addition of liquid water. The results show that in the presence of water, the total yield of carbon-containing gases (i.e., the sum of methane, ethane, and carbon dioxide) was increased by up to 1.8 times when compared to the total yield from the anhydrous pyrolysis experiments. The increased yield of carbon dioxide and methane accounted for 89% and 10.5% of the total increased yield of carbon-containing gases. This indicated that the participation of water could have promoted the release of carbon from over-mature shale, like we used in this study. The methane generated in the hydrous pyrolysis experiments was heavier, with a δ13C value of −21.27‰ (544 °C) compared to that generated in the anhydrous pyrolysis experiments, which showed a lighter δ13C of −33.70‰ (544 °C). It is noteworthy that the δ13C values of the methane from hydrous pyrolysis at >500 °C were even heavier than that of the kerogen from the over-mature shale, although the δ13C values of the methane show an overall increasing trend with increasing temperature both in hydrous and anhydrous pyrolysis. The carbon dioxide from hydrous pyrolysis was less enriched in 13C relative to that from anhydrous pyrolysis. Specifically, the δ 13C values of the carbon dioxide increased with the increasing temperature in anhydrous pyrolysis, whereas they remained nearly constant with increasing temperature in hydrous pyrolysis. The overall lighter δ13C values of the carbon dioxide generated in the hydrous pyrolysis experiments likely indicate that water tends to prompt the release of lighter carbon and/or suppress the release of heavier carbon from over-mature shale in the form of carbon dioxide, especially at higher temperatures, for example, of >510 °C.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3