A New Multi-Objective Optimization Strategy for Improved C3MR Liquefaction Process

Author:

Cui Fenghe1,Pan Lei1,Pang Yi1,Chen Jianwei1,Shi Fan1,Liang Yin2

Affiliation:

1. School of Control and Mechanical Engineering, Tianjin Chengjian University, Tianjin 300380, China

2. School of Energy and Safety Engineering, Tianjin Chengjian University, Tianjin 300380, China

Abstract

In the traditional C3MR process (T-C3MR), the boiling gas (BOG) output from the last stage of the gas–liquid separator is directly discharged, in which the excellent low-temperature capability is not utilized, and the system efficiency is decreased. In liquefied natural gas (LNG), single-objective optimization methods are commonly used to optimize system parameters, which may result in incomplete system analysis. To solve the above problems, this paper proposes a multi-objective optimization strategy for the improved C3MR process(I-C3MR) based on a new multi-objective optimization algorithm called EHR-GWO-GA. Firstly, the main work proposes an I-C3MR structure. Secondly, an optimization strategy of the I-C3MR with the maximization of liquefaction amount, minimization of unit energy consumption and minimization of exergy loss as objective functions are proposed. Based on the optimization results, the influence of decision variables on liquefaction amount, unit energy consumption and exergy loss are analyzed, and the results show that the decision variables have good adaptability. Finally, a detailed exergy analysis of the equipment used is made, and the results show that the main exergy losses come from the water coolers and compressors, accounting for 32% and 34%, respectively. Compared to the T-C3MR, the improved C3MR based on EHR-GWO-GA(E-C3MR) has an approximate 8% increase in liquefaction amount—a roughly 23% decrease in unit energy consumption and a decrease of nearly 24% in exergy loss.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3