Bridging the Gap: Exploring Interpretability in Deep Learning Models for Brain Tumor Detection and Diagnosis from MRI Images

Author:

Nhlapho Wandile1,Atemkeng Marcellin2ORCID,Brima Yusuf3ORCID,Ndogmo Jean-Claude1

Affiliation:

1. Department of Mathematical and Computational Sciences, University of Venda, Thohoyandou 0950, South Africa

2. Department of Mathematics, Rhodes University, Grahamstown 6139, South Africa

3. Institute of Cognitive Science, Osnabrück University, 49074 Osnabrück, Germany

Abstract

The advent of deep learning (DL) has revolutionized medical imaging, offering unprecedented avenues for accurate disease classification and diagnosis. DL models have shown remarkable promise for classifying brain tumors from Magnetic Resonance Imaging (MRI) scans. However, despite their impressive performance, the opaque nature of DL models poses challenges in understanding their decision-making mechanisms, particularly crucial in medical contexts where interpretability is essential. This paper explores the intersection of medical image analysis and DL interpretability, aiming to elucidate the decision-making rationale of DL models in brain tumor classification. Leveraging ten state-of-the-art DL frameworks with transfer learning, we conducted a comprehensive evaluation encompassing both classification accuracy and interpretability. These models underwent thorough training, testing, and fine-tuning, resulting in EfficientNetB0, DenseNet121, and Xception outperforming the other models. These top-performing models were examined using adaptive path-based techniques to understand the underlying decision-making mechanisms. Grad-CAM and Grad-CAM++ highlighted critical image regions where the models identified patterns and features associated with each class of the brain tumor. The regions where the models identified patterns and features correspond visually to the regions where the tumors are located in the images. This result shows that DL models learn important features and patterns in the regions where tumors are located for decision-making.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3