Explainable Machine Learning Method for Aesthetic Prediction of Doors and Home Designs

Author:

Dessureault Jean-Sébastien12ORCID,Clément Félix1ORCID,Ba Seydou1,Meunier François1ORCID,Massicotte Daniel2ORCID

Affiliation:

1. Departement of Mathematics and Computer Science, Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 4M3, Canada

2. Departement of Electrical and Computer Engineering, Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 4M3, Canada

Abstract

The field of interior home design has witnessed a growing utilization of machine learning. However, the subjective nature of aesthetics poses a significant challenge due to its variability among individuals and cultures. This paper proposes an applied machine learning method to enhance manufactured custom doors in a proper and aesthetic home design environment. Since there are millions of possible custom door models based on door types, wood species, dyeing, paint, and glass types, it is impossible to foresee a home design model fitting every custom door. To generate the classification data, a home design expert has to label thousands of door/home design combinations with the different colors and shades utilized in home designs. These data train a random forest classifier in a supervised learning context. The classifier predicts a home design according to a particular custom door. This method is applied in the following context: A web page displays a choice of doors to a customer. The customer selects the desired door properties, which are sent to a server that returns an aesthetic home design model for this door. This door configuration generates a series of images through the Unity 3D engine module, which are returned to the web client. The customer finally visualizes their door in an aesthetic home design context. The results show the random forest classifier’s good performance, with an accuracy level of 86.8%, in predicting suitable home design, marking the way for future developments requiring subjective evaluations. The results are also explained using a feature importance graphic, a decision tree, a confusion matrix, and text.

Funder

Natural Sciences and Engineering Research Council

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3