An Optimized Deep Learning Approach for Detecting Fraudulent Transactions

Author:

El Kafhali Said1ORCID,Tayebi Mohammed1ORCID,Sulimani Hamza2ORCID

Affiliation:

1. Computer, Networks, Modeling, and Mobility Laboratory (IR2M), Faculty of Sciences and Techniques, Hassan First University of Settat, Settat 26000, Morocco

2. College of Computer Science & Engineering, Umm Al-Qura University, Makkah 24381, Saudi Arabia

Abstract

The proliferation of new technologies and advancements in existing ones are altering our perspective of the world. So, continuous improvements are needed. A connected world filled with a vast amount of data was created as a result of the integration of these advanced technologies in the financial sector. The advantages of this connection came at the cost of more sophisticated and advanced attacks, such as fraudulent transactions. To address these illegal transactions, researchers and engineers have created and implemented various systems and models to detect fraudulent transactions; many of them produce better results than others. On the other hand, criminals change their strategies and technologies to imitate legitimate transactions. In this article, the objective is to propose an intelligent system for detecting fraudulent transactions using various deep learning architectures, including artificial neural networks (ANNs), recurrent neural networks (RNNs), and long short-term memory (LSTM). Furthermore, the Bayesian optimization algorithm is used for hyperparameter optimization. For the evaluation, a credit card fraudulent transaction dataset was used. Based on the many experiments conducted, the RNN architecture demonstrated better efficiency and yielded better results in a shorter computational time than the ANN LSTM architectures.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3