Use of Mobile Laser Scanning (MLS) to Monitor Vegetation Recovery on Linear Disturbances

Author:

Jones Caren E.ORCID,Van Dongen AngelineORCID,Aubry Jolan,Schreiber Stefan G.ORCID,Degenhardt Dani

Abstract

Seismic lines are narrow, linear corridors cleared through forests for oil and gas exploration. Their inconsistent recovery has led to Alberta’s forests being highly fragmented, resulting in the need for seismic line restoration programs and subsequent monitoring. Light detection and ranging (LiDAR) is becoming an increasingly popular technology for the fast and accurate measurement of forests. Mobile LiDAR scanners (MLS) are emerging as an alternative to traditional aerial LiDAR due to their increased point cloud density. To determine whether MLS could be effective for collecting vegetation data on seismic lines, we sampled 17 seismic lines using the Emesent Hovermap™ in leaf-on and leaf-off conditions. Processing the LiDAR data was conducted with GreenValley International’s LiDAR 360 software, and data derived from the point clouds were compared to physically measured field data. Overall, the tree detection algorithm was unsuccessful at accurately segmenting the point clouds. Complex vegetation environments on seismic lines, including small conifers with obscured stems or extremely dense and tall shrubs with overlapping canopies, posed a challenge for the software’s capacity to differentiate trees As a result, tree densities and diameters were overestimated, while tree heights were underestimated. Exploration of alternative algorithms and software is needed if measuring vegetation data on seismic lines with MLS is to be implemented.

Funder

Natural Resources Canada - Cumulative Effects Program

Publisher

MDPI AG

Subject

Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3