An Approach for Diver Passive Detection Based on the Established Model of Breathing Sound Emission

Author:

Tu Qiang,Yuan FeiORCID,Yang Weidi,Cheng En

Abstract

Diver breathing sounds can be used as a characteristic for the passive detection of divers. This work introduces an approach for detecting the presence of a diver based on diver breathing sounds signals. An underwater channel model for passive diver detection is built to evaluate the impacts of acoustic energy transmission loss and ambient noise interference. The noise components of the observed signals are suppressed by spectral subtraction based on block-based threshold theory and smooth minimal statistic noise tracking theory. Then the envelope spectrum features of the denoised signal are extracted for diver detection. The performance of the proposed detection method is demonstrated through experimental analysis and numerical modeling.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference27 articles.

1. Feature based passive acoustic detection of underwater threats;Stolkin,2006

2. Variability of SCUBA diver’s acoustic emission;Donskoy,2008

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3