Abstract
Air-independent propulsion systems have improved the performance and decreased the vulnerability of underwater weapon systems. Reforming systems, however, generates large amounts of water and CO2. The recovery or separation of CO2, a residual gas component generated in vessels, entails considerable cost and energy consumption. It is necessary to understand the characteristics of the interaction between CO2 and seawater under the conditions experienced by underwater weapon systems to design and optimize a CO2 treatment process for dissolving CO2 in seawater. In this study, numerical analysis was conducted using the derived experimental concentration and MATLAB. The diffusion coefficient was derived as a function of temperature according to the CO2 dissolution time. Experiments on CO2 dissolution in seawater were conducted. The concentration of CO2 according to the reaction pressure and experimental temperature was obtained. The diffusion coefficient between CO2 and seawater was found to be 6.3 × 10−5 cm2/s at 25 °C and 7.24 × 10−5 cm2/s at 32 °C. CO2 concentration could be estimated accurately under vessel operating conditions using the derived CO2 diffusion coefficients. Optimal design of the residual gas treatment process will be possible using the derived seawater–CO2 diffusion coefficients under the actual operating conditions experienced by underwater weapon systems.
Funder
Defense Acquisition Program Administration
Subject
Ocean Engineering,Water Science and Technology,Civil and Structural Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献