Multi-ROI Spectral Approach for the Continuous Remote Cardio-Respiratory Monitoring from Mobile Device Built-In Cameras

Author:

Molinaro NunziaORCID,Schena EmilianoORCID,Silvestri SergioORCID,Massaroni CarloORCID

Abstract

Heart rate (HR) and respiratory rate (fR) can be estimated by processing videos framing the upper body and face regions without any physical contact with the subject. This paper proposed a technique for continuously monitoring HR and fR via a multi-ROI approach based on the spectral analysis of RGB video frames recorded with a mobile device (i.e., a smartphone’s camera). The respiratory signal was estimated by the motion of the chest, whereas the cardiac signal was retrieved from the pulsatile activity at the level of right and left cheeks and forehead. Videos were recorded from 18 healthy volunteers in four sessions with different user-camera distances (i.e., 0.5 m and 1.0 m) and illumination conditions (i.e., natural and artificial light). For HR estimation, three approaches were investigated based on single or multi-ROI approaches. A commercially available multiparametric device was used to record reference respiratory signals and electrocardiogram (ECG). The results demonstrated that the multi-ROI approach outperforms the single-ROI approach providing temporal trends of both the vital parameters comparable to those provided by the reference, with a mean absolute error (MAE) consistently below 1 breaths·min−1 for fR in all the scenarios, and a MAE between 0.7 bpm and 6 bpm for HR estimation, whose values increase at higher distances.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Remote Photoplethysmography for Heart Rate and Blood Oxygenation Measurement: A Review;IEEE Sensors Journal;2024-08-01

2. Robust Respiration Detection Based on Intelligent Reflecting Surfaces;2023 IEEE International Conferences on Internet of Things (iThings) and IEEE Green Computing & Communications (GreenCom) and IEEE Cyber, Physical & Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics);2023-12-17

3. Challenges and prospects of visual contactless physiological monitoring in clinical study;npj Digital Medicine;2023-12-15

4. Video-based Respiratory Waveform Estimation in Dialogue: A Novel Task and Dataset for Human-Machine Interaction;INTERNATIONAL CONFERENCE ON MULTIMODAL INTERACTION;2023-10-09

5. Cardiorespiratory Parameters Monitoring Through a Single Digital Camera in Real Scenarios: ROI Tracking and Motion Influence;IEEE Sensors Journal;2023-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3