Abstract
Battery remaining useful life (RUL) estimation is critical to battery management and performance optimization of electric vehicles (EVs). In this paper, we present an effective way to estimate RUL online by using the support vector machine (SVM) algorithm. By studying the characteristics of the battery degradation process, the rising of the terminal voltage and changing characteristics of the voltage derivative (DV) during the charging process are introduced as the training variables of the SVM algorithm to determine the battery RUL. The SVM is then applied to build the battery degradation model and predict the battery real cycle numbers. Experimental results prove that the built battery degradation model shows higher accuracy and less computation time compared with those of the neural network (NN) method, thereby making it a potential candidate for realizing online RUL estimation in a battery management system (BMS).
Funder
Research and Development of Test Cycles for Chinese New Energy Vehicles- Data Acquisition in Kunming
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献