Applying the ETL Process to Blockchain Data. Prospect and Findings

Author:

Galici Roberta,Ordile Laura,Marchesi MicheleORCID,Pinna AndreaORCID,Tonelli RobertoORCID

Abstract

We present a novel strategy, based on the Extract, Transform and Load (ETL) process, to collect data from a blockchain, elaborate and make it available for further analysis. The study aims to satisfy the need for increasingly efficient data extraction strategies and effective representation methods for blockchain data. For this reason, we conceived a system to make scalable the process of blockchain data extraction and clustering, and to provide a SQL database which preserves the distinction between transaction and addresses. The proposed system satisfies the need to cluster addresses in entities, and the need to store the extracted data in a conventional database, making possible the data analysis by querying the database. In general, ETL processes allow the automation of the operation of data selection, data collection and data conditioning from a data warehouse, and produce output data in the best format for subsequent processing or for business. We focus on the Bitcoin blockchain transactions, which we organized in a relational database to distinguish between the input section and the output section of each transaction. We describe the implementation of address clustering algorithms specific for the Bitcoin blockchain and the process to collect and transform data and to load them in the database. To balance the input data rate with the elaboration time, we manage blockchain data according to the lambda architecture. To evaluate our process, we first analyzed the performances in terms of scalability, and then we checked its usability by analyzing loaded data. Finally, we present the results of a toy analysis, which provides some findings about blockchain data, focusing on a comparison between the statistics of the last year of transactions, and previous results of historical blockchain data found in the literature. The ETL process we realized to analyze blockchain data is proven to be able to perform a reliable and scalable data acquisition process, whose result makes stored data available for further analysis and business.

Publisher

MDPI AG

Subject

Information Systems

Reference26 articles.

1. A Peer-to-Peer Electronic Cash Systemhttps://bitcoin.org/bitcoin.pdf

2. CoinJoin: Bitcoin Privacy for the Real Worldhttps://bitcointalk.org/?topic=279249

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3