Swarm Division-Based Aircraft Velocity Obstacle Optimization Considering Low-Carbon Emissions

Author:

Zhong Qingwei1ORCID,Yu Yingxue1,Zhang Yongxiang2ORCID,Guo Jingwei3ORCID,He Zian4

Affiliation:

1. College of Air Traffic Management, Civil Aviation Flight University of China, Guanghan 618307, China

2. School of Transportation and Logistics, Southwest Jiaotong University, Chengdu 610031, China

3. Faculty of Business, City University of Macau, Macau SAR 999078, China

4. Guangxi Air Traffic Management Sub-Bureau, Nanning 530031, China

Abstract

In the pursuit of sustainable aviation, this paper presents an innovative approach that adopts a swarm division strategy to enhance and refine the velocity obstacle (VO) method, guided by a low-carbon principle. A dynamic elliptical protection zone model forms the core of this innovative approach. Specifically, this dynamic elliptical protection zone is created based on the difference in aircraft velocity, and a swarm division strategy is introduced in this process. Initially, aircraft that share the same route and type, and have similar velocities and distances, are grouped into swarms. Then, the characteristics of the swarms, such as mass points, velocities, and protection zones, are recorded. Second, the collision cone (CC) between swarms is established, and planar geometrical analysis is used to determine the optimal relief velocity and heading of aircraft on the low-carbon objective while ensuring a safe interval between aircraft in the swarm during the relief period. Additionally, a swarm control algorithm is utilized to adjust the velocity of the aircraft by a small margin. Finally, simulation experiments are conducted using Python, revealing that the swarm relief efficiency of the enhanced VO method sees a notable increase of over 33%. Concurrently, the need for adjustments decreases by an average of 32.78%, while fuel savings reach as high as 70.18%. The strategy is real-time and operational, significantly reduces the air traffic controller (ATC) workload, improves flight efficiency and safety, and contributes positively to the reduction in carbon emissions, which is beneficial for the environment.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Sichuan Province

Social Science Planning Project of Sichuan Province

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3