Research of the Impact of Hydrogen Metallurgy Technology on the Reduction of the Chinese Steel Industry’s Carbon Dioxide Emissions

Author:

Wan Fang1,Li Jizu1,Han Yunfei1,Yao Xilong1

Affiliation:

1. College of Economics and Management, Taiyuan University of Technology, Taiyuan 030024, China

Abstract

The steel industry, which relies heavily on primary energy, is one of the industries with the highest CO2 emissions in China. It is urgent for the industry to identify ways to embark on the path to “green steel”. Hydrogen metallurgy technology uses hydrogen as a reducing agent, and its use is an important way to reduce CO2 emissions from long-term steelmaking and ensure the green and sustainable development of the steel industry. Previous research has demonstrated the feasibility and emission reduction effects of hydrogen metallurgy technology; however, further research is needed to dynamically analyze the overall impact of the large-scale development of hydrogen metallurgy technology on future CO2 emissions from the steel industry. This article selects the integrated MARKAL-EFOM system (TIMES) model as its analysis model, constructs a China steel industry hydrogen metallurgy model (TIMES-CSHM), and analyzes the resulting impact of hydrogen metallurgy technology on CO2 emissions. The results indicate that in the business-as-usual scenario (BAU scenario), applying hydrogen metallurgy technology in the period from 2020 to 2050 is expected to reduce emissions by 203 million tons, and make an average 39.85% contribution to reducing the steel industry’s CO2 emissions. In the carbon emission reduction scenario, applying hydrogen metallurgy technology in the period from 2020 to 2050 is expected to reduce emissions by 353 million tons, contributing an average of 41.32% to steel industry CO2 reduction. This study provides an assessment of how hydrogen metallurgy can reduce CO2 emissions in the steel industry, and also provides a reference for the development of hydrogen metallurgy technology.

Publisher

MDPI AG

Reference47 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3