Performance Assessment of a New Flat Sepiolite Clay-Based Ultrafiltration Membrane for the Removal of Paracetamol and Indigo Blue Dyes from Two Synthetic Aqueous Solutions

Author:

Romdhani Mohamed12,Aloulou Wala1,Aloulou Hajer13,Duplay Joelle4ORCID,Charcosset Catherine2,Ben Amar Raja1

Affiliation:

1. Research Unit “Advanced Technologies for Environment and Smart Cities”, Faculty of Science of Sfax, University of Sfax, Sfax 3038, Tunisia

2. LAGEP, UMR 5007, CNRS, Université Claude Bernard Lyon 1, 43 Boulevard du 11 Novembre 1918, F-69100 Villeurbanne, France

3. Department of Chemistry, Preparatory Institute for Engineering Studies of Gabes, Gabes 6029, Tunisia

4. ITES, UMR 7063, CNRS, Université de Strasbourg, F-67084 Strasbourg, France

Abstract

In the last decade, the development of a new generation of membranes based on low-cost materials has been widely studied. These membranes demonstrate significantly higher performance than the conventional ceramic membranes currently used in membrane separation technology. This work is focused on the development of a low-cost flat UF ceramic membrane composed completely of sepiolite using a uniaxial pressing method with dimensions of 5.5 cm of diameter and 3 mm of thickness. The sintering temperatures used were from 650 to 800 °C. Several properties, such as morphology, porosity, permeability, mechanical strength, and chemical resistance, are investigated. The results show that the mean pore diameter is increased from 40 to 150 nm when the sintering temperature increases from 650 °C to 800 °C. At these temperatures, excellent mechanical strength of 18 MPa to 22 MPa and high chemical resistance were achieved. SEM results revealed a crack-free structure with a uniformly smooth surface. Permeability tests were conducted using dead-end filtration. The sepiolite membrane demonstrated an improvement in its water permeability from 18 to 41 L·m−2·h−1·bar−1 when the sintering temperature increased from 650 °C to 750 °C. The efficiency of the sepiolite membranes sintered at 650 °C and 700 °C were evaluated with the application of the removal of paracetamol (PCT) and indigo blue (IB) dye separately from two synthetic aqueous solutions representing the pharmaceutical and textile sectors. Excellent removal efficiency of almost 100% for both contaminants was observed at ambient temperature and a pressure of 3 bars. Membrane regeneration was achieved through simple rinsing with deionized water. According to this finding, the UF sepiolite membrane demonstrated reversible fouling, which is consistent with the fouling coefficient “FRR” value higher than 90%.

Funder

European Union

PHC-Utique

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3