Evaluation of Sputtering Processes in Strontium Iridate Thin Films

Author:

Fuentes Víctor1ORCID,Balcells Lluis1,Konstantinović Zorica2ORCID,Martínez Benjamín1ORCID,Pomar Alberto1ORCID

Affiliation:

1. Instituto de Ciencia de Materiales de Barcelona, ICMAB-CSIC, Campus Universitario UAB, 08193 Bellaterra, Spain

2. Center for Solid State Physics and New Materials, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia

Abstract

The growth of epitaxial thin films from the Ruddlesden–Popper series of strontium iridates by magnetron sputtering is analyzed. It was found that, even using a non-stoichiometric target, the films formed under various conditions were consistently of the perovskite-like n = ∞ SrIrO3 phase, with no evidence of other RP series phases. A detailed inspection of the temperature–oxygen phase diagram underscored that kinetics mechanisms prevail over thermodynamics considerations. The analysis of the angular distribution of sputtered iridium and strontium species indicated clearly different spatial distribution patterns. Additionally, significant backsputtering was detected at elevated temperatures. Thus, it is assumed that the interplay between these two kinetic phenomena is at the origin of the preferential nucleation of the SrIrO3 phase. In addition, strategies for controlling cation stoichiometry off-axis have also been explored. Finally, the long-term stability of the films has been demonstrated.

Funder

“Spanish Ministry of Science and Innovation” through “Severo Ochoa”

OXISOT

Institute of Physics Belgrade

European Union’s Horizon 2020 research and innovation programme

ICMAB within the framework of the NFFA-Europe Pilot Transnational Access Activity

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3