Composition Regulation of Potassium Sodium Niobate Thin Films through Post-Annealing under Alkali Element Atmospheres

Author:

Chen Binjie1,Tao Chuanyang1,Fan Wenying1,Shen Binglin1,Ju Min1,Dou Zhongshang1,Wu Chaofeng2,Yao Fang-Zhou13,Gong Wen2,Wang Ke14

Affiliation:

1. Research Center for Advanced Functional Ceramics, Wuzhen Laboratory, Jiaxing 314500, China

2. Tongxiang Tsingfeng Technology Co., Ltd., Jiaxing 314501, China

3. Center of Advanced Ceramic Materials and Devices, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China

4. State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China

Abstract

Amorphous potassium sodium niobate (KNN) films were synthesized at 300 °C through the radio frequency magnetron sputtering method and subsequently crystallized by post-annealing at 700 °C in various alkali element atmospheres (Na and K). The as-deposited film is notably deficient in alkali metal elements, particularly K, whereas the loss of alkali elements in the films can be replenished through annealing in an alkali element atmosphere. By adjusting the molar ratio of Na and K in the annealing atmosphere, the ratio of Na/K in the resultant film varied, consequently suggesting the efficiency of this method on composition regulation of KNN films. Meanwhile, we also found that the physical characteristics of the films also underwent differences with the change of an annealing atmosphere. The films annealed in a high Na atmosphere exhibit large dielectric losses with limited piezoelectric vibration behavior, while annealing in a high K atmosphere reduces the dielectric losses and enhances the piezoelectric behavior. Furthermore, the results of vibration measurement demonstrated that the film annealed in a mixed powder of 25% Na2CO3 and 75% K2CO3 exhibits an optimal vibration displacement of ~400 pm under the sinusoidal excitation voltage of 8 V. This approach of altering the composition of KNN films through post-annealing may introduce the new concept of property design of KNN as well as other similar films.

Funder

National Key Research and Development Program of China

Key R&D Program of Zhejiang

National Nature Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3