Amorphous, Carbonated Calcium Phosphate and Biopolymer-Composite-Coated Si3N4/MWCNTs as Potential Novel Implant Materials

Author:

Furko Monika1,Detsch Rainer2ORCID,Horváth Zsolt E.1,Balázsi Katalin1ORCID,Boccaccini Aldo R.2ORCID,Balázsi Csaba1ORCID

Affiliation:

1. Centre for Energy Research, HUN-REN, 1121, Konkoly-Thege Road 29-33, 1121 Budapest, Hungary

2. Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauer Str. 6, 91058 Erlangen, Germany

Abstract

A biodegradable amorphous carbonated calcium phosphate (caCP)-incorporated polycaprolactone (PCL) composite layer was successfully deposited by a spin coater. In this specific coating, the PCL acts as a bioadhesive, since it provides a better adherence of the coatings to the substrate compared to powder coatings. The caCP–PCL coatings were deposited and formed thin layers on the surface of a Si3N4–3 wt% MWCNT (multiwalled carbon nanotube) substrate, which is an emerging type of implant material in the biomedical field. The composite coatings were examined regarding their morphology, structure and biological performance. The biocompatibility of the samples was tested in vitro with MC3T3-E1 preosteoblast cells. Owing to the caCP–PCL thin layer, the cell viability values were considerably increased compared to the substrate material. The ALP and LDH tests showed numerous living cells on the investrigated coatings. The morphology of the MC3T3-E1 cells was examined by fluorescent staining (calcein and DAPI) and scanning electron microscopy, both of which revealed a well-spread, adhered and confluent monolayer of cells. All performed biocompatibility tests were positive and indicated the applicability of the deposited thin composite layers as possible candidates for orthopaedic implants for an extended period.

Funder

National Research, Development and Innovation Office

European Ceramic Society

European Structural and Investment Funds

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference65 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3