Thermal Conduction in Hybrid Nanofluids and Aggregates

Author:

Skouras Eugene D.12ORCID,Karagiannakis Nikolaos P.1,Burganos Vasilis N.1ORCID

Affiliation:

1. Institute of Chemical Engineering Sciences (ICE-HT), Foundation for Research and Technology, Hellas (FORTH), GR-26504 Patras, Greece

2. Department of Mechanical Engineering, University of the Peloponnese, GR-26334 Patras, Greece

Abstract

Hybrid nanofluids contain more than one type of nanoparticle and have shown improved thermofluidic properties compared to more conventional ones that contain a single nanocomponent. Such hybrid systems have been introduced to improve further the thermal and mass transport properties of nanoparticulate systems that affect a multitude of applications. The impact of a second particle type on the effective thermal conductivity of nanofluids is investigated here using the reconstruction of particle configurations and prediction of thermal efficiency with meshless methods, placing emphasis on the role of particle aggregation. An algorithm to obtain particle clusters of the core–shell type is presented as an alternative to random mixing. The method offers rapid, controlled reconstruction of clustered systems with tailored properties, such as the fractal dimension, the average number of particles per aggregate, and the distribution of distinct particle types within the aggregates. The nanoparticle dispersion conditions are found to have a major impact on the thermal properties of hybrid nanofluids. Specifically, the spatial distribution of the two particle types within the aggregates and the shape of the aggregates, as described by their fractal dimension, are shown to affect strongly the conductivity of the nanofluid even at low volume fractions. Cluster configurations made up of a high-conducting core and a low-conducting shell were found to be advantageous for conduction. Low fractal dimension aggregates favored the creation of long continuous pathways across the nanofluid and increased conductivity.

Funder

European Commission

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3