Detection of Total Hip Replacement Loosening Based on Structure-Borne Sound: Influence of the Position of the Sensor on the Hip Stem

Author:

Schumacher Nico1ORCID,Geiger Franziska2ORCID,Spors Sascha3ORCID,Bader Rainer2,Haubelt Christian1ORCID,Kluess Daniel2ORCID

Affiliation:

1. Applied Microelectronics and Computer Engineering, University of Rostock, 18059 Rostock, Germany

2. Department of Orthopaedics, Rostock University Medical Center, 18057 Rostock, Germany

3. Institute of Communications Engineering, University of Rostock, 18059 Rostock, Germany

Abstract

Accurate detection of implant loosening is crucial for early intervention in total hip replacements, but current imaging methods lack sensitivity and specificity. Vibration methods, already successful in dentistry, represent a promising approach. In order to detect loosening of the total hip replacement, excitation and measurement should be performed intracorporeally to minimize the influence of soft tissue on damping of the signals. However, only implants with a single sensor intracorporeally integrated into the implant for detecting vibrations have been presented in the literature. Considering different mode shapes, the sensor’s position on the implant is assumed to influence the signals. In the work at hand, the influence of the position of the sensor on the recording of the vibrations on the implant was investigated. For this purpose, a simplified test setup was created with a titanium rod implanted in a cylinder of artificial cancellous bone. Mechanical stimulation via an exciter attached to the rod was recorded by three accelerometers at varying positions along the titanium rod. Three states of peri-implant loosening within the bone stock were simulated by extracting the bone material around the titanium rod, and different markers were analyzed to distinguish between these states of loosening. In addition, a modal analysis was performed using the finite element method to analyze the mode shapes. Distinct differences in the signals recorded by the acceleration sensors within defects highlight the influence of sensor position on mode detection and natural frequencies. Thus, using multiple sensors could be advantageous in accurately detecting all modes and determining the implant loosening state more precisely.

Funder

German Research Foundation (Deutsche Forschungsgemeinschaft, DFG)—SFB 1270/2

Publisher

MDPI AG

Reference37 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3