An Ultra-Area-Efficient 1024-Point In-Memory FFT Processor

Author:

Yantır Hasan ErdemORCID,Guo Wenzhe,Eltawil Ahmed M.,Kurdahi Fadi J.,Salama Khaled Nabil

Abstract

Current computation architectures rely on more processor-centric design principles. On the other hand, the inevitable increase in the amount of data that applications need forces researchers to design novel processor architectures that are more data-centric. By following this principle, this study proposes an area-efficient Fast Fourier Transform (FFT) processor through in-memory computing. The proposed architecture occupies the smallest footprint of around 0.1 mm 2 inside its class together with acceptable power efficiency. According to the results, the processor exhibits the highest area efficiency ( FFT / s / area ) among the existing FFT processors in the current literature.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Reference52 articles.

1. Processing data where it makes sense: Enabling in-memory computation;Mutlu;Microprocess. Microsyst.,2019

2. Big data needs a hardware revolution

3. Enabling the Adoption of Processing-in-Memory: Challenges, Mechanisms, Future Research Directions;Ghose;arXiv,2018

4. Scalable processors in the billion-transistor era: IRAM

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Streaming Data Processing Architecture Based on Lookup Tables;Electronics;2023-06-19

2. FPGA Implementation of Associative Processors;IEEE Transactions on Circuits and Systems II: Express Briefs;2023-05

3. CRAM-Based Acceleration for Intermittent Computing of Parallelizable Tasks;IEEE Transactions on Emerging Topics in Computing;2023

4. MemFHE: End-to-End Computing with Fully Homomorphic Encryption in Memory;ACM Transactions on Embedded Computing Systems;2022-11

5. Fast Fourier Transform (FFT) Using Flash Arrays for Noise Signal Processing;IEEE Electron Device Letters;2022-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3