Fabrication of Micro- and Nanopillars from Pyrolytic Carbon and Tetrahedral Amorphous Carbon

Author:

Heikkinen Joonas J.ORCID,Peltola Emilia,Wester Niklas,Koskinen Jari,Laurila Tomi,Franssila Sami,Jokinen Ville

Abstract

Pattern formation of pyrolyzed carbon (PyC) and tetrahedral amorphous carbon (ta-C) thin films were investigated at micro- and nanoscale. Micro- and nanopillars were fabricated from both materials, and their biocompatibility was studied with cell viability tests. Carbon materials are known to be very challenging to pattern. Here we demonstrate two approaches to create biocompatible carbon features. The microtopographies were 2 μ m or 20 μ m pillars (1:1 aspect ratio) with three different pillar layouts (square-grid, hexa-grid, or random-grid orientation). The nanoscale topography consisted of random nanopillars fabricated by maskless anisotropic etching. The PyC structures were fabricated with photolithography and embossing techniques in SU-8 photopolymer which was pyrolyzed in an inert atmosphere. The ta-C is a thin film coating, and the structures for it were fabricated on silicon substrates. Despite different fabrication methods, both materials were formed into comparable micro- and nanostructures. Mouse neural stem cells were cultured on the samples (without any coatings) and their viability was evaluated with colorimetric viability assay. All samples expressed good biocompatibility, but the topography has only a minor effect on viability. Two μ m pillars in ta-C shows increased cell count and aggregation compared to planar ta-C reference sample. The presented materials and fabrication techniques are well suited for applications that require carbon chemistry and benefit from large surface area and topography, such as electrophysiological and -chemical sensors for in vivo and in vitro measurements.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3