Effects of Irrigation with Desalinated Seawater and Hydroponic System on Tomato Quality

Author:

Antolinos Vera,Sánchez-Martínez María J.,Maestre-Valero José F.,López-Gómez Antonio,Martínez-Hernández Ginés B.ORCID

Abstract

The use of desalinated seawater (DSW) as an alternative to conventional water resources is gradually gaining more interest due to the strong water deficit and increasing pressure on water resources in semi-arid regions. Furthermore, the combination of this alternative irrigation with the hydroponic cultivation system would allow continuous production almost through the whole year and hydroponic-related high crop yield. Nevertheless, the effects of DSW irrigation in hydroponic systems on the product quality need to be firstly studied to avoid product quality losses. In this study, we evaluated the effects on the quality of two tomato cvs. (Ramyle and Racymo) of three different irrigation treatments (T1, DSW; T2, DSW/well water mix; and T3, well water) under hydroponic or traditional cultivation systems. The soluble solid content of samples (highly correlated to dry matter content) grown under hydroponic conditions and T3 irrigation showed the highest values (5.8 °Brix) although such differences (<0.6 °Brix) with T1 might not be sensorially appreciated. Similarly, although T3 samples showed higher acidity than T1 samples, such differences (0.06%) would be not appreciated by the consumer. Tomatoes grown in hydroponic conditions had 1.1–1.2-fold higher firmness than conventional soil conditions showing hydroponic T3 samples had the highest value (21–23 N). Tomato cv. Racymo displayed higher color index (chroma) than cv. Ramyle, registering hydroponic T1 samples the most intense red color correlated with the highest lycopene content of 41.1 mg/kg. T1 irrigation of tomatoes cv. Ramyle did not induce significant changes while differences lower than 10% were observed in the tomato cv. Racymo. The highest total antioxidant capacity, which was highly correlated to the total phenolic content (R2 = 0.80), was found for hydroponic T1 samples with 1637/1243 µmol/kg for the tomato cvs. Ramyle/Racymo. Conclusively, the use of DSW would not compromise the consumer acceptance of tomatoes due to the low (not appreciable) quality differences, with even the total antioxidant capacity of these samples being increased. Furthermore, the mix of DSW with conventional water resources (lower cost) would not compromise the tomato quality.

Funder

LIFE programme

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference58 articles.

1. Tomato as a Source of Carotenoids and Polyphenols Targeted to Cancer Prevention

2. FAOSTAThttp://www.fao.org/faostat/en/#data

3. Tomato Consumption and Health: Emerging Benefits

4. Sensory profile of eight tomato cultivars (Lycopersicon Esculentum) and its relationship to consumer preference;Pagliarini;Ital. J. Food Sci.,2001

5. Content of total phenolics and phenolic acids in tomato (Lycopersicon esculentum Mill.) fruits as influenced by cultivar and solar UV radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3