Elbow Damage Identification Technique Based on Sparse Inversion Image Reconstruction

Author:

Wang Yu,Li Xueyi

Abstract

Continuous monitoring for defects in oil and gas pipelines is important for leakage prevention. This paper proposes a new kind of pipe elbow damage identification technique, which consists of three processes. First, piezoelectric sensors evenly arranged along the circumference of the pipeline in the turn generated ultrasonic guided wave signals in the elbow. Then, the wavefront flight time at each grid node in the known sound field were computed using the fast-marching algorithm. Finally, an elbow wall thickness map reconstruction technique based on the sparse inversion method was proposed to identify elbow defects. Compared with the traditional elbow defect identification technology, this technology can not only detect the existence of the defect but also accurately locate the defect position.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

Reference48 articles.

1. Erosion-corrosion in oil and gas production (Part2);Lu;Chem. Eng. Oil Gas,2013

2. Benefits of Creating a Cross–Country Data Framework for Energy Efficiency;Katzman,2013

3. The application of guided wave travel time tomography to bends;Volker;AIP Conf. Proc.,2010

4. Ultrasonic testing by determination of material properties;Krautkrämer,1990

5. Torsional guided-wave attenuation in coal-tar-enamel-coated, buried piping

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3