Microstructure Characterization of Reversed Transformation in Cryogenically Rolled 22MnB5

Author:

Yao Shengjie,Chen Long,Chu Guannan,Zhao Hongyun,Feng Lei,Wang Guodong

Abstract

Hot stamping is a well-known process to produce structural automotive parts with an excellent strength-to-weight ratio. However, this process is more expensive due to the lower energy efficiency and operating cost of the traditional roller-hearth furnace. Additionally, lower ductility and toughness are commonly recognized as the main disadvantages of the current hot stamped ultra-high-strength parts. Refinement of austenite grains could be a profitable way to improve the strength of hot stamped parts. In this work, the evolution of reversed transformation in asymmetrically cryogenically rolled samples was studied in order to control the austenite. Thermomechanical simulation and heat treatment in the salt bath were used to investigate the reversed transformation process, and the typical microstructures were characterized by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Compared with symmetric prerolling, ferrite recrystallization could be remarkably inhibited by asymmetric rolling at the liquid nitrogen temperature (LNT) during the reheating process. Additionally, the nucleation of the austenite inner grains can also be promoted and the dynamics of the reversed transformation accelerated by asymmetric prerolling. Such phenomena might be very useful to refine the parent austenite grains before press hardening and enhance the new hot stamping strategy by partial fast reheating.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

Reference33 articles.

1. The All-New Volvo XC90 Car Body;Ljungqvist,2014

2. A review on hot stamping

3. Principles of the Austenitization of Steels;Brooks,1992

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3