Bacterial and Archaeal Assemblages from Two Size Fractions in Submarine Groundwater Near an Industrial Zone

Author:

Chen XiaogangORCID,Ye Qi,Du Jinzhou,Zhang Jing

Abstract

Nutrients and organic pollutants transported by submarine groundwater discharge (SGD) play a significant role in controlling water quality, and can lead to the concerned deleterious effects on marine ecosystems. Subterranean estuaries are complicated habitats of diverse microbial communities that mediate different biogeochemical processes. However, there is less information on how microorganisms mediate biogeochemical cycles in the submarine groundwater system. In this study, we investigated the changes in bacterial and archaeal assemblages from two size fractions (0.2–0.45 μm and >0.45 μm) in the submarine groundwater of Qinzhou Bay, China. Phylogenetic analysis showed that Bathyarchaeota was dominant in archaeal communities in the >0.45 μm size fraction, but was seldom in the 0.2–0.45 μm fraction. The co-occurrence of sequences belonging to Bathyarchaeota and Methanosaeta was found in the >0.45 μm size fraction. Since a gene encoding acetate kinase of Bathyarchaeota is involved in acetate production, and acetate is also a necessary growth factor for Methanosaeta, the acetate produced by Bathyarchaeota can provide food or energy sources for Methanosaeta in this very >0.45 μm size fraction. The most abundant bacterial sequences in the >0.45 μm size fraction was closely related to biomineral iron-oxidizing Gallionella spp., whereas the dominant bacterial sequences in the 0.2–0.45 μm fraction were affiliated with Limnohabitans spp., which can utilize dissolved organic matter as an important source of growth substrates. Notably, approximately 10% of the bacterial sequences in both of the two size fractions belonged to Novosphingobium spp., which plays an important role in the degradation of pollutants, especially aromatic compounds. Furthermore, the predictive functional profiling also revealed that the pathways involved in the degradation of aromatic compounds by both bacteria and archaea were identified. The presence of nutrients or pollutants in our study site provides different substrates for the growth of the specific microbial groups; in turn, these microbes may help to deplete pollutants to the ocean through submarine groundwater. We suggest that these specific microbial groups could be potential candidates for effective in situ bioremediation of groundwater ecosystems.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3