Visible Light Communication System for Offshore Wind Turbine Foundation Scour Early Warning Monitoring

Author:

Lin Yung-BinORCID,Lin Tzu-KangORCID,Chang Cheng-Chun,Huang Chang-Wei,Chen Ben-Ting,Lai Jihn-Sung,Chang Kuo-Chun

Abstract

Offshore wind farms have a superior wind source to terrestrial wind farms, but they also face more severe environmental conditions such as severe storms, typhoons, and sea waves. Scour leads to the excavation of sediments around the foundations of structures, reducing the safe capacity of the structures. The phenomenon of pier scour is extremely complex because of the combined effects of the vortex system involving time-dependent flow patterns and sediment transport mechanisms. A real-time scour monitoring system can improve the safety of structures and afford cost-effective operations by preventing premature or unnecessary maintenance. This paper proposes an on-site scour monitoring system using visible light communication (VLC) modules for offshore wind turbine installations. A flume experiment revealed that the system was highly sensitive and accurate in monitoring seabed scour processes. This arrayed-VLC sensory system, proposed in this paper, has considerable potential for safety monitoring and also can contribute to improving the accuracy of empirical scour formulas for sustainable maintenance in the life cycle of offshore structures.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Assessing structural homogeneity and heterogeneity in offshore wind farms: A population-based structural health monitoring approach;Ocean Engineering;2024-11

2. Research on Scour Monitoring Techniques for Bridge Pile Foundations;Lecture Notes in Civil Engineering;2024

3. Numerical Analysis of Local Scour of the Offshore Wind Turbines in Taiwan;Journal of Marine Science and Engineering;2023-04-27

4. Foundation monitoring system of offshore wind turbines;Non-Destructive Testing and Condition Monitoring Techniques in Wind Energy;2023

5. Environmental flow monitoring system–the need of the hour;INTERNATIONAL CONFERENCE ON ADVANCES IN MULTI-DISCIPLINARY SCIENCES AND ENGINEERING RESEARCH: ICAMSER-2021;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3