A Time-Series Self-Supervised Learning Approach to Detection of Cyber-physical Attacks in Water Distribution Systems

Author:

Mahmoud HaithamORCID,Wu WenyanORCID,Gaber Mohamed MedhatORCID

Abstract

Water Distribution System (WDS) threats have significantly grown following the Maroochy shire incident, as evidenced by proofed attacks on water premises. As a result, in addition to traditional solutions (e.g., data encryption and authentication), attack detection is being proposed in WDS to reduce disruption cases. The attack detection system must meet two critical requirements: high accuracy and near real-time detection. This drives us to propose a two-stage detection system that uses self-supervised and unsupervised algorithms to detect Cyber-Physical (CP) attacks. Stage 1 uses heuristic adaptive self-supervised algorithms to achieve near real-time decision-making and detection sensitivity of 66% utilizing Boss. Stage 2 attempts to validate the detection of attacks using an unsupervised algorithm to maintain a detection accuracy of 94% utilizing Isolation Forest. Both stages are examined against time granularity and are empirically analyzed against a variety of performance evaluation indicators. Our findings demonstrate that the algorithms in stage 1 are less favored than those in the literature, but their existence enables near real-time decision-making and detection reliability. In stage 2, the isolation Forest algorithm, in contrast, gives excellent accuracy. As a result, both stages can collaborate to maximize accuracy in a near real-time attack detection system.

Funder

Horizon 2020 MSCA-ITN-IOT4win

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine learning applications for anomaly detection in Smart Water Metering Networks: A systematic review;Physics and Chemistry of the Earth, Parts A/B/C;2024-06

2. Real-Time Anomaly Detection in Large-Scale Sensor Networks using Isolation Forests;2024 International Conference on Communication, Computer Sciences and Engineering (IC3SE);2024-05-09

3. Hyperparameter Tuned Cloud Based Cyber Physical Attack Detection using Stacking Ensemble Learning;2024 IEEE International Students' Conference on Electrical, Electronics and Computer Science (SCEECS);2024-02-24

4. Attack graph-based stochastic modeling approach for enabling cybersecure semiconductor wafer fabrication;Computers & Industrial Engineering;2024-02

5. Tram Air Conditioning Fault Prediction Using Machine Learning;Lecture Notes in Computer Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3